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LETTER TO THE EDITOR 

Symmetry properties of one- and two-dimensional 
Fokker-Planck equations 

W M Shtelen and V I Stogny 
Institute of Mathematics, Repin Street 3, Kiev-4, USSR 

Received 17 April 1989 

Abstract. We study symmetry properties of some Fokker-Planck (FP) equations. In the 
one-dimensional case, when symmetry groups tum out to be six-parameter ones, this allows 
us to find changes of variables to reduce such FP equations to the one-dimensional heat 
equation. We present seven well known FP equations which are reduced to the heat 
equation. We also study the symmetry and obtain some exact solutions of the Kramers 
equation. 

The one-dimensional FP equation has the form (see, for example, [ l ] )  

where U = u(x, t )  is the probability density; A and B are differentiable functions. This 
is the basic equation in the theory of continuous Markovian processes. The following 
FP equations are of special interest [ 1,2]: 

( a )  diffusion in a gravitational field 

( b )  the 

(c )  the 

au  a a 2 U  
-=- (gu)+4 D- 
a t  ax ax2 

Ornstein-Uhlenbeck process 

a u  a a’u _ - _  - ( k x U ) + f D T  
a t  ax  ax 

Rayleigh-type process 

au  a 

( d )  models in population genetics [2] 

au  a a’ a 
a t  2 ax2  ax 
- [ ( x  - c)’u] + p - [ ( x  - c)u]  

au  a’ 
a t  ax2 

au  a a’ 
a t  2 a x 2  

- [(l-X’)’U] 

[x2( 1 - x’)’u] -=-- 

0305-4470/89/130539+05%02.50 @ 1989 1OP Publishing Ltd 



L540 Letter to the Editor 

(e)  the Rayleigh process 

a t  ax 

where 0, g, k, y, p, a, p, c are arbitrary constants. 
Using Lie’s method [3] one can make sure that the maximal invariance group of 

equations (2)-(7) is a six-parameter one. The same dimension has the invariance group 
of the heat equation. It is to be pointed out that these six-parameter groups are 
different, but they are locally isomorphic. That is why one can reduce equations (2)-(7) 
to the heat equation. 

Theorem 1. The change of variables 

u(x, f )  =f(x ,  t)w(y(x, t ) ,  T(X, r ) )  
where the function f and new independent variables y and T are as follows: 

( 9 )  

D 
4k 

T = - exp(2kt) f = exp{ kr} y = exp{ kr}x 

P 
T =- exp(2yt) 

4Y 
f =  exp(2yr)x Y = exP{Yt}x 

reduce equations (2)-(7), correspondingly, to the heat equation 

w, = wyy. (16) 

The proof can be easily obtained by inspection. 

Remark 1 .  One can prove a more general statement. Equation (1) with coefficients 

A(x, t )  = A(x) B(x, t )  = B =constant (17) 
is reduced to the heat equation if and only if 

aA 
ax 

A2+ B - =  c2x2+ C , X +  c0 

where co, c I ,  c2 are arbitrary constants. Note that equations (2)-(4) satisfy condition 
(18) and equation (8) does not. The general solution of equation (18), which is a 
Riccati one, cannot be obtained in quadrature [4]. 
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Remark 2. The FP equation of the form 

was considered in [5,6] and by means of algebraic methods a class of solutions of it 
was obtained. This result cap be easily obtained if we note that equation (19) is reduced 
to the heat equation (16) by the substitution (9) with 

f =  exp{ -I' 0 a ( s )  ds) 

Now consider the two-dimensional FP equation which describes the motion of a 
particle in a fluctuating medium (so-called Brownian movement) 

a u  a a a _-  - -- (yu)+-(V(x)u)+y-  
a t  ax ay ay 

where U = u(t, x, y ) ,  y is a constant and V(x) is the potential (its gradient defines the 
exterior force). Equation (21) is known as Kramers equation [l]. 

Theorem 2. The maximal invariance group of the free Kramers equation 

is a six-dimensional Lie group generated by the following operators: 

Po = a, pI =a, Z 

GI = fa, +a, +i(y + yx) (23) 

which satisfy the commutation relations 

(the rest of the commutators are equal to zero). 
The proof can be obtained by Lie's method. 

Remark 3. One can prove a more general statement: the widest symmetry group of 
equation (21) is achieved when V(x)  = clx+ c (c1, c are arbitrary constants) and it is 
a six-parameter group. 
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Remark 4. The change of variables 

24 = w(7 ,5 ,77 )  T = t  I = x - ( c / r ) t  77 = y  - ( c / Y )  (25) 

reduces equation (21) with V‘(x) = c to the free Kramers equation (22). 
Let us write down the final transformations generated by operators (23). Operators 

Po and PI generate translations on variables t and x; I generates the identical transfor- 
mation; GI generates 

t ’ =  t x’ = x + at y ’ = y + a  

U’( x’) = exp{ - t [  ay + ( a2/2)( 1 + Y t )  + ~ax]}u(x )  

SI generates 

t ’ =  t x ’ = x + ( 6 / 7 )  e”‘ y ’ = y + 6 e Y ‘  

u’(x’) =exp{by eY‘-(b2/2) eZY‘}u(x) 

TI generates 

t’= t x‘=X+(e/Y) e-”‘ y’ = y - ,g e-”‘ 
(28) 

where a, 6, f3 are group parameters. It is appropriate to write here the corresponding 
formulae of generating solutions which follow from (26)-(28) (the general theory is 
contained in [7]): 

U’(X’) = u(x)  

U I I  ( 4  x, Y 1 = U, ( t ‘ ,  x’, Y’) (31) 

where t’, x’, y’ are given in (26)-(28) respectively. 

variable y in the Kramers equation is taken to be velocity of the particle. 
It will be noted that transformations (26) are just the Galilean ones as soon as the 

A well known solution of the Kramers equation (21) is the Boltzmann distribution 

u(x, y )  =A” exp{ - u(x) -iy’} (32) 

(K is a normalisation constant). It is a stationary solution. Applying this to (32) with 
V = 0, formulae (29)-(31), one can easily obtain a non-stationary solution of equation 

According to the algorithm of [8,7] and using the operator from (23) we find the 
(22). 

ansatz 

Substitution of (33) into (22) gives rise to the heat equation 
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The simplest solution of (34) is cp = constant, but it is the solution that leads, together 
with the ansatz (33), to the Boltzmann distribution (32). It is clear that by using 
solutions of the heat equation (34) and the ansatz (33) one can construct many partial 
solutions of equation (22). For example, the fundamental solution of (34) and (33) 
results in the following solution of equation (22): 

The operator TI from (23) leads to the ansatz 

= 6 ( W I  Y W 2 )  W ]  = t w2= y x + y  (36) 

which reduces (23) to the heat equation (34), where cp = eyw16(01, 02). 

A great number of partial solutions of equation (23) can be found by means of the 
method described in [9] (see also [7]). So, if uo = uo( t, x,  y )  is a solution of the equation, 
then the functions Quo, Q2uo, .  . . will also be solutions with any symmetry operator Q. 

For example, starting from uo = e'', we find 

u1 = 2G1 eYf = e"'( yx + y )  

u2 = Glul  = eY'[( yt + 1) + $ ( r x  + y)'] (37) 

.... 
Analogously, by means of the operator TI from (23), we find, starting from uo= 
exP{ - Y2/2L 

u ,  = TI exp{ -;} = y exp{ -( y t + $ ) }  

u2 = T,ul = ( y 2  - 1) exp{ - (2  yt +$)} . . . . 
Solutions ( 3 3 ,  (37) and (38) can be multiplied by the formulae of the generating 
solutions (29)-( 3 1). 

Helpful and fruitful discussions with Professor Wilhelm Fushchich are gratefully 
acknowledged. 
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