Symmetry properties of one- and two-dimensional Fokker-Planck equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L539
(http://iopscience.iop.org/0305-4470/22/13/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:44

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Symmetry properties of one- and two-dimensional Fokker-Planck equations

W M Shtelen and V I Stogny
Institute of Mathematics, Repin Street 3, Kiev-4, USSR

Received 17 April 1989

Abstract

We study symmetry properties of some Fokker-Planck (FP) equations. In the one-dimensional case, when symmetry groups turn out to be six-parameter ones, this allows us to find changes of variables to reduce such FP equations to the one-dimensional heat equation. We present seven well known FP equations which are reduced to the heat equation. We also study the symmetry and obtain some exact solutions of the Kramers equation.

The one-dimensional FP equation has the form (see, for example, [1])

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{\partial}{\partial x}[A(x, t) u]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}[B(x, t) u] \tag{1}
\end{equation*}
$$

where $u=u(x, t)$ is the probability density; A and B are differentiable functions. This is the basic equation in the theory of continuous Markovian processes. The following FP equations are of special interest [1,2]:
(a) diffusion in a gravitational field

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}(g u)+\frac{1}{2} D \frac{\partial^{2} u}{\partial x^{2}} \tag{2}
\end{equation*}
$$

(b) the Ornstein-Uhlenbeck process

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}(k x u)+\frac{1}{2} D \frac{\partial^{2} u}{\partial x^{2}} \tag{3}
\end{equation*}
$$

(c) the Rayleigh-type process

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[\left(\gamma x-\frac{\mu}{x}\right) u\right]+\frac{1}{2} \mu \frac{\partial^{2} u}{\partial x^{2}} \tag{4}
\end{equation*}
$$

(d) models in population genetics [2]

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\frac{\alpha}{2} \frac{\partial^{2}}{\partial x^{2}}\left[(x-c)^{2} u\right]+\beta \frac{\partial}{\partial x}[(x-c) u] \tag{5}\\
& \frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}\left[\left(1-x^{2}\right)^{2} u\right] \tag{6}\\
& \frac{\partial u}{\partial t}=\frac{\alpha}{2} \frac{\partial^{2}}{\partial x^{2}}\left[x^{2}\left(1-x^{2}\right)^{2} u\right] \tag{7}
\end{align*}
$$

(e) the Rayleigh process

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left[\left(\gamma x-\frac{\mu}{x}\right) u\right]+\mu \frac{\partial^{2} u}{\partial x^{2}} \tag{8}
\end{equation*}
$$

where $D, \mathrm{~g}, k, \gamma, \mu, \alpha, \beta, c$ are arbitrary constants.
Using Lie's method [3] one can make sure that the maximal invariance group of equations (2)-(7) is a six-parameter one. The same dimension has the invariance group of the heat equation. It is to be pointed out that these six-parameter groups are different, but they are locally isomorphic. That is why one can reduce equations (2)-(7) to the heat equation.

Theorem 1. The change of variables

$$
\begin{equation*}
u(x, t)=f(x, t) w(y(x, t), \tau(x, t)) \tag{9}
\end{equation*}
$$

where the function f and new independent variables y and τ are as follows:

$$
\begin{equation*}
f=\exp \left\{-\frac{g}{D} x-\frac{g^{2}}{2 D} t\right\} \quad y=x \quad \tau=\frac{D}{2} t \tag{10}
\end{equation*}
$$

$f=\exp \{k t\} \quad y=\exp \{k t\} x \quad \tau=\frac{D}{4 k} \exp \{2 k t\}$
$f=\exp \{2 \gamma t\} x \quad y=\exp \{\gamma t\} x \quad \tau=\frac{\mu}{4 \gamma} \exp \{2 \gamma t\}$
$f=\exp \left\{-\left(\frac{\beta^{2}}{2 \alpha}+\frac{\beta}{2}+\frac{\alpha}{8}\right) t\right\}(x-c)^{-(3 / 2+\beta / \alpha)} \quad y=\sqrt{2 / \alpha} \ln (x-c) \quad \tau=t$
$f=\exp \{-t\}\left(1-x^{2}\right)^{-3 / 2} \quad y=\frac{1}{2} \ln \frac{1+x}{1-x} \quad \tau=t$
$f=\exp \left\{-\frac{\alpha}{8} t\right\} x^{-3 / 2}(1-x)^{-3 / 2} \quad y=\ln \frac{x}{1-x} \quad \tau=\frac{\alpha}{2} t$
reduce equations (2)-(7), correspondingly, to the heat equation

$$
\begin{equation*}
w_{\tau}=w_{y y} . \tag{16}
\end{equation*}
$$

The proof can be easily obtained by inspection.
Remark 1. One can prove a more general statement. Equation (1) with coefficients

$$
\begin{equation*}
A(x, t)=A(x) \quad B(x, t)=B=\text { constant } \tag{17}
\end{equation*}
$$

is reduced to the heat equation if and only if

$$
\begin{equation*}
A^{2}+B \frac{\partial A}{\partial x}=c_{2} x^{2}+c_{1} x+c_{0} \tag{18}
\end{equation*}
$$

where c_{0}, c_{1}, c_{2} are arbitrary constants. Note that equations (2)-(4) satisfy condition (18) and equation (8) does not. The general solution of equation (18), which is a Riccati one, cannot be obtained in quadrature [4].

Remark 2. The FP equation of the form

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{\partial}{\partial x}[(a(t) x+b(t)) u]+c(t) \frac{\partial^{2} u}{\partial x^{2}} \tag{19}
\end{equation*}
$$

was considered in [5,6] and by means of algebraic methods a class of solutions of it was obtained. This result can be easily obtained if we note that equation (19) is reduced to the heat equation (16) by the substitution (9) with

$$
\begin{align*}
& f=\exp \left\{-\int_{0}^{t} a(s) \mathrm{d} s\right\} \\
& y=\exp \left\{-\int_{0}^{t} a(s) \mathrm{d} s\right\} x-\int_{0}^{t} b(s) \exp \left\{-\int_{0}^{s} a(\xi) \mathrm{d} \xi\right\} \mathrm{d} s \tag{20}\\
& \tau=\int_{0}^{t} c(s) \exp \left\{-2 \int_{0}^{s} a(\xi) \mathrm{d} \xi\right\} \mathrm{d} s .
\end{align*}
$$

Now consider the two-dimensional FP equation which describes the motion of a particle in a fluctuating medium (so-called Brownian movement)

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{\partial}{\partial x}(y u)+\frac{\partial}{\partial y}\left(V^{\prime}(x) u\right)+\gamma \frac{\partial}{\partial y}\left(y u+\frac{\partial u}{\partial y}\right) \tag{21}
\end{equation*}
$$

where $u=u(t, x, y), \gamma$ is a constant and $V(x)$ is the potential (its gradient defines the exterior force). Equation (21) is known as Kramers equation [1].

Theorem 2. The maximal invariance group of the free Kramers equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\frac{\partial}{\partial x}(y u)+\gamma \frac{\partial}{\partial y}\left(y u+\frac{\partial u}{\partial y}\right) \tag{22}
\end{equation*}
$$

is a six-dimensional Lie group generated by the following operators:

$$
\begin{array}{ll}
P_{0}=\partial_{t} \quad P_{1}=\partial_{x} & I \\
G_{1}=t \partial_{x}+\partial_{y}+\frac{1}{2}(y+\gamma x) & \tag{23}\\
S_{1}=\mathrm{e}^{\gamma t}\left(\frac{1}{\gamma} \partial_{x}+\partial_{y}+y\right) & T_{1}=\mathrm{e}^{-\gamma t}\left(\frac{1}{\gamma} \partial_{x}-\partial_{y}\right)
\end{array}
$$

which satisfy the commutation relations

$$
\begin{array}{lrl}
{\left[P_{0}, G_{1}\right]=P_{1}} & {\left[P_{0}, S_{1}\right]=\gamma S_{1}} \\
{\left[P_{0}, T_{1}\right]=-\gamma T_{1}} & {\left[P_{1}, G_{1}\right]=-\frac{1}{2} \gamma} & {\left[T_{1}, S_{1}\right]=I} \tag{24}
\end{array}
$$

(the rest of the commutators are equal to zero).
The proof can be obtained by Lie's method.
Remark 3. One can prove a more general statement: the widest symmetry group of equation (21) is achieved when $V^{\prime}(x)=c_{1} x+c$ (c_{1}, c are arbitrary constants) and it is a six-parameter group.

Remark 4. The change of variables

$$
\begin{equation*}
u=w(\tau, \xi, \eta) \quad \tau=t \quad \xi=x-(c / \gamma) t \quad \eta=y-(c / \gamma) \tag{25}
\end{equation*}
$$

reduces equation (21) with $V^{\prime}(x)=c$ to the free Kramers equation (22).
Let us write down the final transformations generated by operators (23). Operators P_{0} and P_{1} generate translations on variables t and $x ; I$ generates the identical transformation; G_{1} generates

$$
\begin{align*}
& t^{\prime}=t \quad x^{\prime}=x+a t \quad y^{\prime}=y+a \\
& u^{\prime}\left(x^{\prime}\right)=\exp \left\{-\frac{1}{2}\left[a y+\left(a^{2} / 2\right)(1+\gamma t)+\gamma a x\right]\right\} u(x) \tag{26}
\end{align*}
$$

S_{1} generates

$$
\begin{align*}
& t^{\prime}=t \quad x^{\prime}=x+(b / \gamma) \mathrm{e}^{\gamma t} \quad y^{\prime}=y+b \mathrm{e}^{\gamma t} \\
& u^{\prime}\left(x^{\prime}\right)=\exp \left\{b y \mathrm{e}^{\gamma t}-\left(b^{2} / 2\right) \mathrm{e}^{2 \gamma t}\right\} u(x) \tag{27}
\end{align*}
$$

T_{1} generates

$$
\begin{align*}
& t^{\prime}=t \quad x^{\prime}=x+(\theta / \gamma) \mathrm{e}^{-\gamma t} \quad y^{\prime}=y-\theta \mathrm{e}^{-\gamma t} \\
& u^{\prime}\left(x^{\prime}\right)=u(x) \tag{28}
\end{align*}
$$

where a, b, θ are group parameters. It is appropriate to write here the corresponding formulae of generating solutions which follow from (26)-(28) (the general theory is contained in [7]):

$$
\begin{align*}
& u_{I I}(t, x, y)=\exp \left\{\frac{a}{2}\left[y+\frac{a}{2}\left(1+\gamma^{t}\right)+\gamma x\right]\right\} u_{I}\left(t^{\prime}, x^{\prime}, y^{\prime}\right) \tag{29}\\
& u_{I I}(t, x, y)=\exp \left\{-b y \mathrm{e}^{\gamma^{t}}+\frac{b^{2}}{2} \mathrm{e}^{2 \gamma t}\right\} u_{I}\left(t^{\prime}, x^{\prime}, y^{\prime}\right) \tag{30}\\
& u_{I I}(t, x, y)=u_{I}\left(t^{\prime}, x^{\prime}, y^{\prime}\right) \tag{31}
\end{align*}
$$

where $t^{\prime}, x^{\prime}, y^{\prime}$ are given in (26)-(28) respectively.
It will be noted that transformations (26) are just the Galilean ones as soon as the variable y in the Kramers equation is taken to be velocity of the particle.

A well known solution of the Kramers equation (21) is the Boltzmann distribution

$$
\begin{equation*}
u(x, y)=\mathcal{N} \exp \left\{-v(x)-\frac{1}{2} y^{2}\right\} \tag{32}
\end{equation*}
$$

(\mathcal{N} is a normalisation constant). It is a stationary solution. Applying this to (32) with $V=0$, formulae (29)-(31), one can easily obtain a non-stationary solution of equation (22).

According to the algorithm of [8,7] and using the operator from (23) we find the ansatz

$$
\begin{equation*}
u(t, x, y)=\exp \left\{-\frac{y^{2}}{2}\right\} \varphi\left(\omega_{1}, \omega_{2}\right) \quad \omega_{1}=t, \omega_{2}=\gamma x-y \tag{33}
\end{equation*}
$$

Substitution of (33) into (22) gives rise to the heat equation

$$
\begin{equation*}
\frac{\partial \varphi}{\partial \omega_{1}}-\gamma \frac{\partial^{2} \varphi}{\partial \omega_{2}^{2}}=0 \tag{34}
\end{equation*}
$$

The simplest solution of (34) is $\varphi=$ constant, but it is the solution that leads, together with the ansatz (33), to the Boltzmann distribution (32). It is clear that by using solutions of the heat equation (34) and the ansatz (33) one can construct many partial solutions of equation (22). For example, the fundamental solution of (34) and (33) results in the following solution of equation (22):

$$
\begin{equation*}
u(t, x, y)=\frac{1}{\sqrt{4 \pi \gamma t}} \exp \left\{-\frac{y^{2}}{2}-\frac{(\gamma x-y)^{2}}{4 \gamma t}\right\} \tag{35}
\end{equation*}
$$

The operator T_{1} from (23) leads to the ansatz

$$
\begin{equation*}
u=\tilde{\varphi}\left(\omega_{1}, \omega_{2}\right) \quad \omega_{1}=t \quad \omega_{2}=\gamma x+y \tag{36}
\end{equation*}
$$

which reduces (23) to the heat equation (34), where $\varphi=\mathrm{e}^{\gamma \omega_{1}} \tilde{\varphi}\left(\omega_{1}, \omega_{2}\right)$.
A great number of partial solutions of equation (23) can be found by means of the method described in [9] (see also [7]). So, if $u_{0}=u_{0}(t, x, y)$ is a solution of the equation, then the functions $Q u_{0}, Q^{2} u_{0}, \ldots$ will also be solutions with any symmetry operator Q.

For example, starting from $u_{0}=\mathrm{e}^{\gamma t}$, we find

$$
\begin{align*}
& u_{1}=2 G_{1} \mathrm{e}^{\gamma t}=\mathrm{e}^{\gamma t}(\gamma x+y) \\
& u_{2}=G_{1} u_{1}=\mathrm{e}^{\gamma t}\left[(\gamma t+1)+\frac{1}{2}(\gamma x+y)^{2}\right] \tag{37}
\end{align*}
$$

Analogously, by means of the operator T_{1} from (23), we find, starting from $u_{0}=$ $\exp \left\{-y^{2} / 2\right\}$,

$$
\begin{align*}
& u_{1}=T_{1} \exp \left\{-\frac{y^{2}}{2}\right\}=y \exp \left\{-\left(y t+\frac{y^{2}}{2}\right)\right\} \\
& u_{2}=T_{1} u_{1}=\left(y^{2}-1\right) \exp \left\{-\left(2 \gamma t+\frac{y^{2}}{2}\right)\right\} \ldots \tag{38}
\end{align*}
$$

Solutions (35), (37) and (38) can be multiplied by the formulae of the generating solutions (29)-(31).

Helpful and fruitful discussions with Professor Wilhelm Fushchich are gratefully acknowledged.

References

[1] Gardiner C W 1985 Handbook of Stochastic Methods (Berlin: Springer)
[2] Kimura M 1964 J. Appl. Prob. 1177
[3] Ovsyannikov L V 1978 Group Analysis of Differential Equations (Moscow: Nauka) (Engl. transl. 1982 (New York: Academic))
[4] Kamke E 1959 Differentialgleichungen Lösungsmethoden und Lösungen (Leipzig: Teubner)
[5] Suzuki M 1985 J. Math. Phys. 26601
[6] Wolf F 1988 J. Math. Phys. 29305
[7] Fushchich W I, Shtelen W M and Serov N I 1989 Symmetry Analysis and Exact Solutions of Nonlinear Equations of Mathematical Physics (Kiev: Naukova dumka)
[8] Fushchich W I 1981 Algebraic-Theoretical Studies in Mathematical Physics (Kiev: Institute of Mathematics) p 6
[9] Shtelen W M 1987 Symmetry and Exact Solutions of Nonlinear Equations of Mathematical Physics (Kiev: Institute of Mathematics) p 31

